

und Umwelttechnik mbH

Verification of groundwater influence of sealing clays by a modified testing method

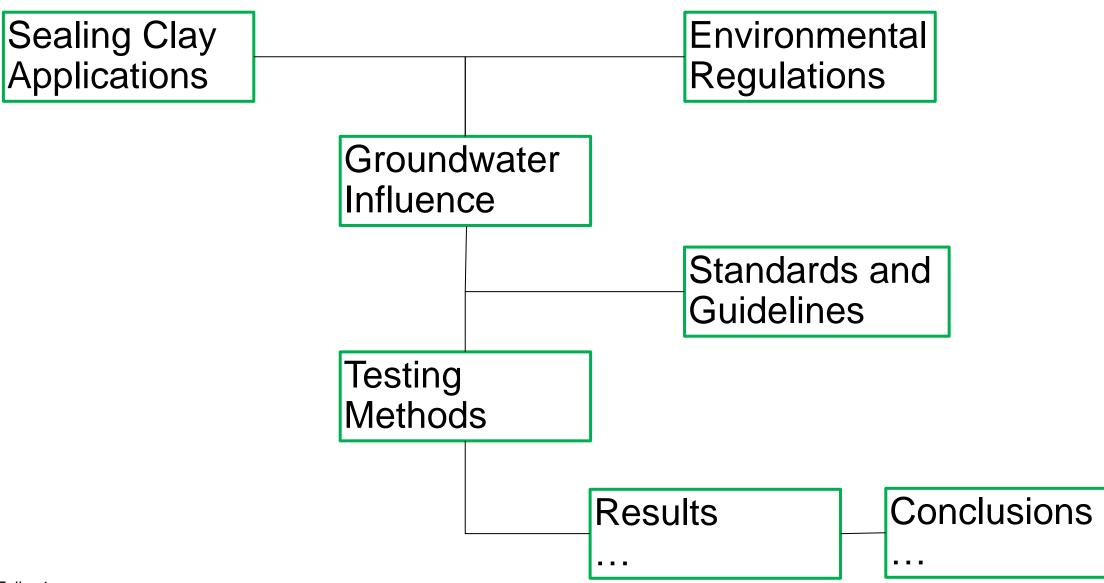
Dr.-Ing. Peter Grubert

Contents

- Introduction
- Rules and Regulations . Standards and Guidelines
- Sealing Clay Applications
- Grundwater Influence
- Product Properties
- Testing methods
- Results
- Conclusions

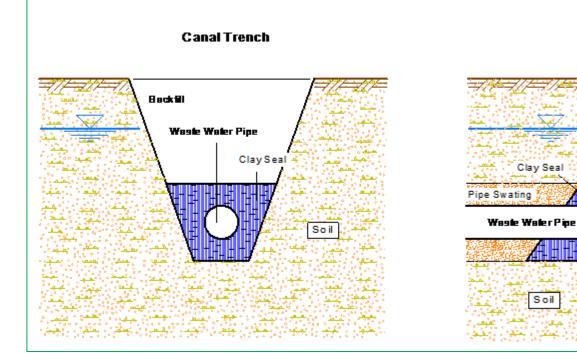
Who and what is GGU mbH ?

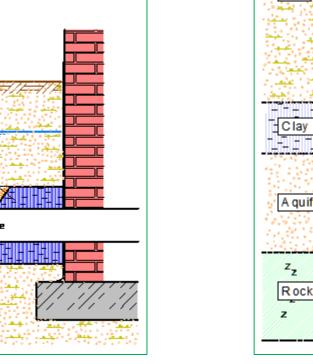
- Consulting Services
 - Geotechnical Engineering
 - Environmental Engineering
- Accredited Laboratories
 - Soil Mechanics
 - Polymer Technology
- Materials Testing
 - Landfill Engineering
 - Recycling Technology
- Product Development Folie: 3

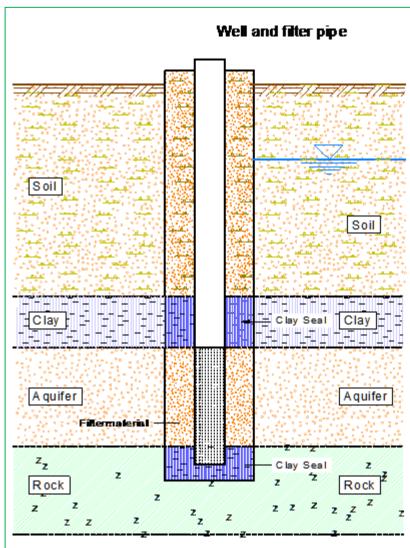


Introduction

Rules and Regulations . Standards and Guidelines

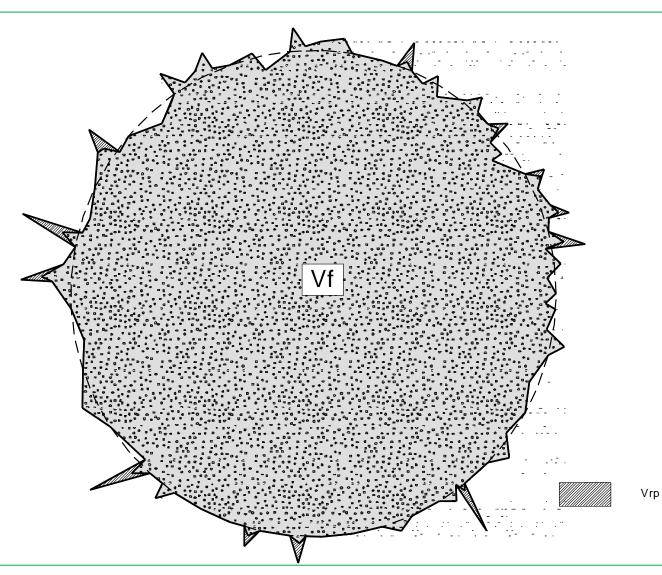



- <u>LAWA 2002</u> Principles of precautionary groundwater protection in waste recycling and product use, GAP Paper (Grundsätze des vorsorgenden Grundwasserschutzes bei Abfallverwertung und Produkteinsatz)
- DIBT 2011 Principles for the Evaluation of the effects of Products on soil and groundwater
- LAWA 2016 Derivation of threshold values of significance for groundwater (Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser)
- BBodSchV Federal Soil Protection and Contaminated Sites Decree
- LAGA EW 98 T Guideline for the procedure for physical and chemical analysis of waste, contaminated soil and materials from contaminated areas, Creation and analysis of aqueous eluates
- <u>EN 1744-3:2002</u> Tests for chemical properties of aggregates-Part 3: Preparation of eluates by leaching of aggregates
- DIN 4904 Poured sealing clay for well construction, Requirements and testing


Sealing Clay Applications

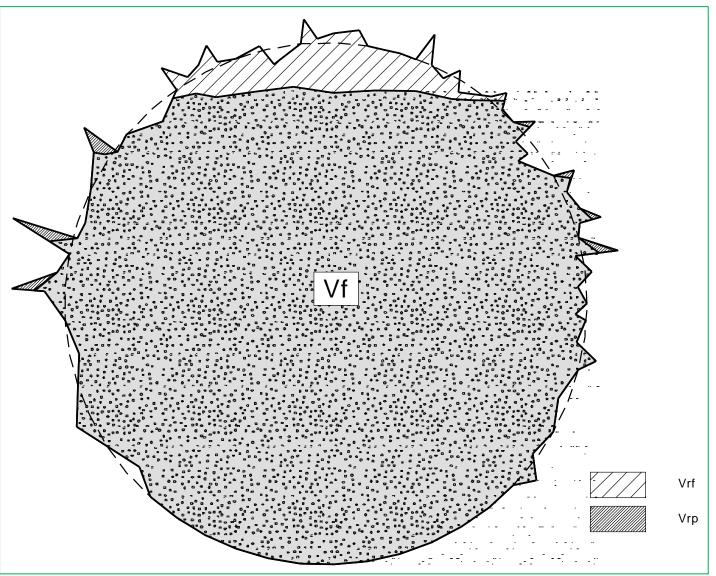
GQ

- Pipes and Wells
 - Placement and controlled compaction
 - Uncompacted Insertion
 - Self compaction and self sealing properties



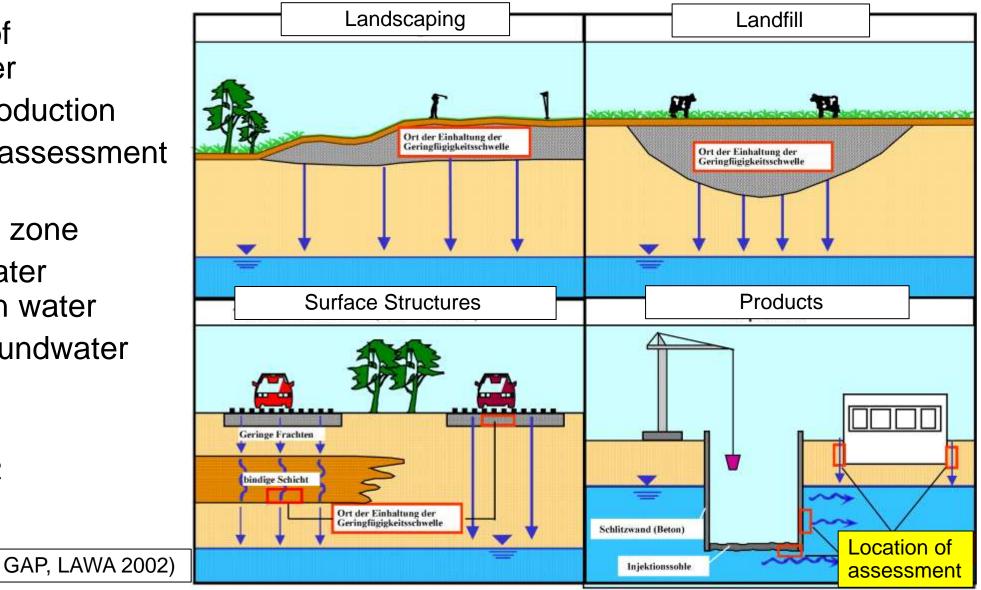
Sealing Clay Applications

GQU


- Mine Shaft (vertical)
- Vertical Mine Deposits
 - Placement under water
 - Self compaction properties
 - Self sealing properties
- Permeability ?
- Groundwater Exposition ?

Sealing Clay Applications

- Mining Tunnels
- Deposit Chambers
 - Placement by pneumatic methods
 - Self compaction properties
 - Self sealing properties
- Permeability ?
- Groundwater Exposition ?



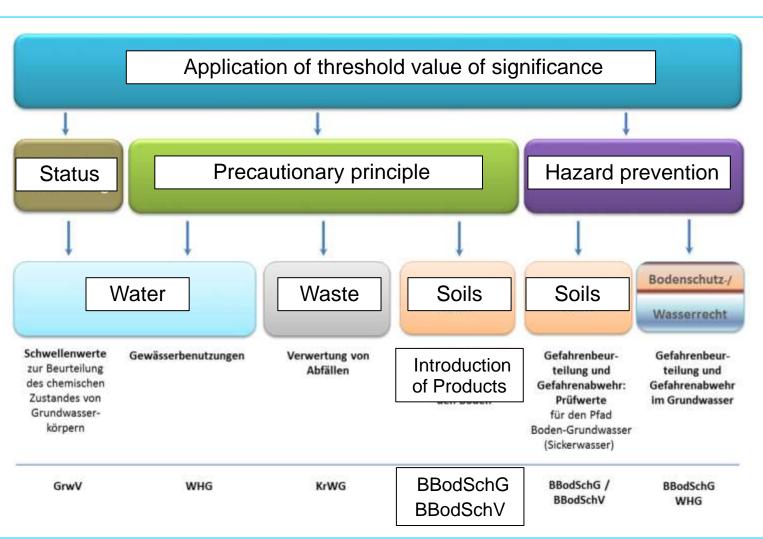
Groundwater influence

- Protection of Groundwater
- Product introduction
- Location of assessment
- Saturated / unsaturated zone
- Seepage water
 / Percolation water
- Contact groundwater
 - DIBT 2011

LAWA 2002

Groundwater influence

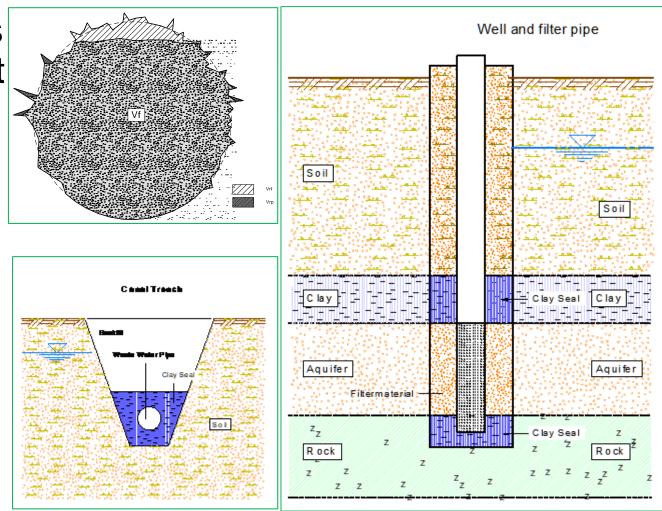
- Seepage water / Percolation water 0
 - Leachate LAGA EW 98 S -> DIN EN 12457 Product Matrix / Soil Matrix is destroyed \rightarrow "Standard Leachate method"
- Surface / Contact groundwater 0
 - Lechate LAGA EW 90 T -> EN 1744-3 Product Matrix / Soil Matrix / **Product Properties are preserved** \rightarrow

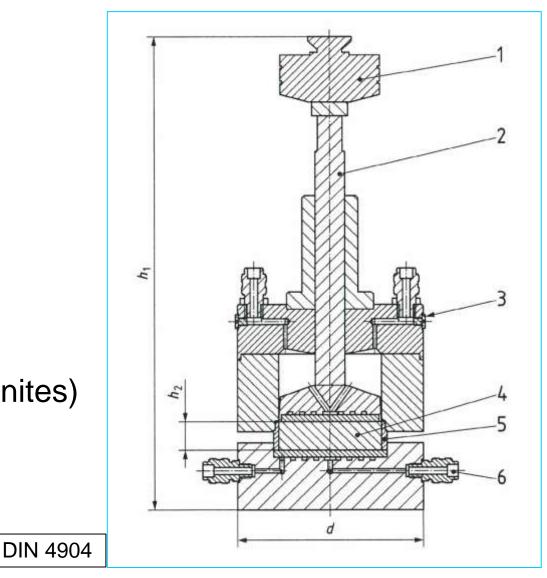

- "Trough Leachate Method"
- Precautionary principle: Threshold value of significance

Groundwater influence

Precautionary Principle

LAWA 2016


- Applicable
 Environmental
 Regulations
 - Groundwater LAWA 2016
 - Soils Law
 Soils Decree
 BBodSchV


- Introduction of an impervious Product into the Environment
- Properties influenced by the placement procedure
- Groundwater Influence: Contact Groundwater
- Testing: Trough Leachate
- Principle: Preserving the properties of the product in its installed condition !

- Well construction
 - <u>Phase 1, settling phase</u>
 Pellets sink to the installation location, surrounded by water go into suspension, structural stability (DIN 4904)
 - <u>Phase 2a, installed state</u>
 Pellets have settled, self compacted, not covered, constant volume
 - Phase 2b, installed state in permanent condition Volumetric stability, self compacted and self sealed pellets, Swollen final state with constant volume Permanent condition of the installed material
 - Phase 2b: State of assessment and location of assessment !

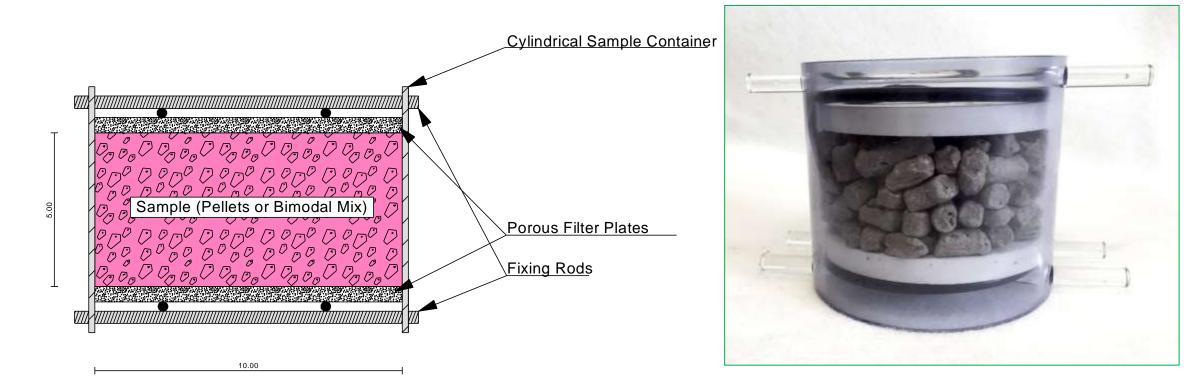
- Self-compaction
 - Granular material "Pellets"
 - Optimum Bulk Density dry
 - Optimum Buoyant Density after Sink Phase
 - Bimodal material "Pellets" + "Filler"
 - Intergranular voids fill
- Self sealing
 - Clay mineralogy (Smektites, Montmorillonites)
 - Swelling behaviour with water access
 - Swelling volume change (Softening, NO !)
 - Swelling pressure (Self Sealing, YES !)

Pellets Water Placement: Swelling and Self Sealing

Self Sealing after water access. Constained volume change

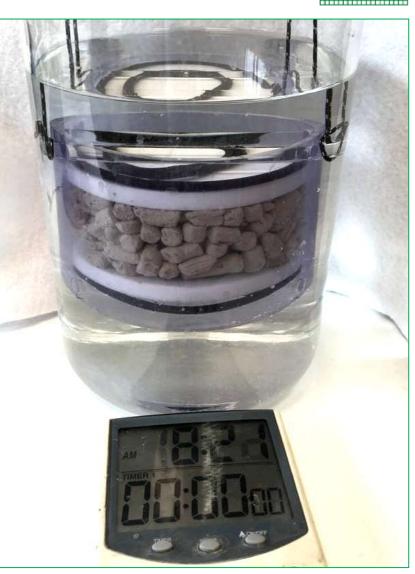
- Bimodal Products Pellets and Filler
 - Self-Compaction
 - Swelling and Self Sealing

Sample for Permeability Testing


Principle: Procerving the

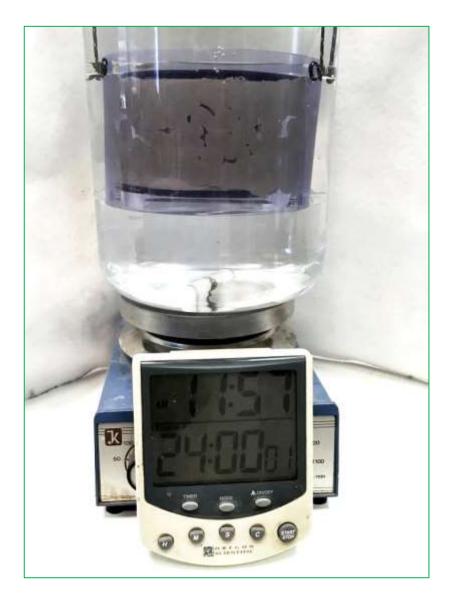
- Preserving the properties of the Product in its installed condition
- Unrestricted water access but volumetric stability
- Trough leachate method

Principle: Preserving the properties of the Product in its installed condition


Constant volume condition

- Principle:
 Exposing the relevant location / surface
 - Water access + Swelling at constant volume

Preserving the properties of the Product


0

Principle:

Testing Methods

- Water access + Swelling at constant volume
- Self-Sealing process

- Principle:
 - Preserving the properties of the Product in the installed condition
 - Exposing the relevant location / surface to water
- Trough Leachate procedure
 - Swelling at constant volume by water contact
 - Controlled creation of contact groundwater in a trough
 - Chemical analysis of that water (Leachate)
 - 2 Step appoach

Evaluation

- Placement of samples in a constant-volume test cylinder enclosed by water-permeable glass filter plates. This accurately resemples the installation condition in the annular space of a well
- Simulation of the <u>initial swelling process</u> by leaving the test cylinder in a trough tank for 24-48 h with water contact. The test volume remains constant. Thus the swelling process is simulated correctly.
- Creation of a <u>first trough leachate</u> in distilled water with magnetic stirrer over a period of 24 h. This results in a <u>short-term, maximum</u> <u>release of adsorbed substances</u> in the clay. A chemical analysis of the leachate is performed (simulation of the <u>installation condition</u>).
- Pollutant contents measured here are short-term and do not correspond to a practical situation. They are for <u>reference purposes</u> only

- Simulation of the <u>residual conditions</u> by a subsequent swelling process in distilled water by leaving the test cylinder in a trough tank with water contact over 48 h to 72 h
- Creation of a second trough leachate in distilled water with magnetic stirrer over a period of 24 h. A second chemical analysis of the entire leachate is performed (simulation of the <u>permanent state</u>).
- The chemical analysis is performed for the entire parameter spectrum according to LAGA 2016 and the evaluation is based on the limit values / <u>threshold values of significance</u> according to . BBodschV. The values determined here can be regarded as long-term values in the contact groundwater.
- These are used for the evaluation of groundwater influence

Results

- Comparision of parameters to threshold values of significance
- Deifferenze between initial state and residual state Modelling of permanent condition

Parameter Teil 1 anorganisch	Einheit	Probenbezeichnung		Threshold Values
		Sample initial state	Sample Residual state	
Antimon	μg/l	< 1	<1	10
Arsen	µa/t	< 1	<1	10
Barium	µg/l	< 10	< 10	
Blei	µg/l	< 1	< 1	25
Bor	µg/l	< 100	< 100	
Cadmium	ugil	< 0,3	< 0,3	5
Chrom gesamt	µg/l	8,8	9,3	50
Chrom VI	μg/l	< 30	< 30	
Kobalt	µg/Ì	< 5	<5	50
Kupfer	µg/l	< 5	< 5	50
Molybdan	μg/l	< 5	< 5	50
Nickel	Γgų	< 1	< 1	50
Quecksilber	µg/t	< 1	< 1	1
Selen	µg/l	3	<2	10
Thallium	μg/l	< 1	< 1	
Vanadium	µg/l	< 4	< 4	
Zink	µg/l	< 10	< 10	500
Chlorid	mg/i	2,7	1,1	
Cyanid	идл	< 5	< 5	50
Fluorid	μg/l	< 500	< 500	750
Sulfat	mg/l	18	6,7	
Teil 2 organisch				
Σ PAK (TVO)	μg/l	0	0	0,2
Anthracen	µдЛ	< 0,02	< 0,02	
Benzo[a]pyren	µg/l	< 0,02	< 0,02	
Summe Senzo[b]fluoranthen und Benzo[k]fluoranthen	μд/Ι	< 0,02	< 0.02	
Summe Benzo[ghi]perylen und Indeno[123-cd]pyren	μgi	< 0,02	< 0,02	
Dibenz(a,h)anthracen	µg/l	< 0,02	< 0,02	
Fluoranthen	µg/l	< 0,02	< 0,02	
Σ Naphthalin u. Methylnaphthaline	μg/l	0,035	0,053	2
Kohlenwasserstoffe	µg/l	< 120	< 140	200
Phenol	μg/l	< 10	< 10	20

Conclusion

- The Trough Leachate Method
 - Model the groundwater influence of introduced products
 - Product properties in the installed condition
 - Location of assessment by <u>relevant product exposure</u>
- Installation procedure \rightarrow Product properties / exposure
 - Desired <u>self-compaction</u> resulting in a specific bulk (buoyant) density
 - Subsequent swelling resulting in a the desired <u>self-sealing</u> properties
 - Relevant exposure for leachate creation
- Realistic environmental impact / groundwater influence assessment

Gesellschaft für Grundbau und Umwelttechnik mbH

Baugrund

Grundwasser Umwelttechnik /Altlasten Damm- und Deichbau Straßen- und Erdbau Spezialtiefbau Deponiebau Kunststofftechnik Software-Entwicklung

Baugrunderkundung Feldmesstechnik Prüflabore für Boden Prüflabor für Kunststoff Inspektionsstelle

Braunschweig Magdeburg Öhringen Schwerin

Beratende Ingenieure VBI, BDB, DWA, DGGT, ITVA, BWK Sachverständige für Erd- und Grundbau Vereidigte Sachverständige Amtsgericht Braunschweig HRB 9354 Geschäftsführer: Prof. Dr.-Ing. Johann BuB, Dr.-Ing., Dipl.-Wirtsch.-Ing. Peter Grubert, M.Sc., Dr.-Ing. Carl Stoewahse Dipl.-Ing. Birk Kröber Dipl.-Ing. Axel Seilkopf

www.ggu.de p.grubert@ggu.de